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FACTORIZABLE SCHEMES FOR THE EQUATIONS OF FLUID FLOW

DAVID SIDILKOVER*

Abstract. We present an upwind high-resolution factorizable (UHF) discrete scheme for the compressible

Euler equations that allows to distinguish between full-potential and advection factors at the discrete level.

The scheme approximates equations in their general conservative form and is related to the family of genuinely

multidimensional upwind schemes developed previously and demonstrated to have good shock-capturing

capabilities. A unique property of this scheme is that in addition to the aforementioned features it is also

factorizable, i.e. it allows to distinguish between full-potential and advection factors at the discrete level.

The latter property facilitates the construction of optimally efficient multigrid solvers. This is done through

a relaxation procedure that utilizes the factorizability property.

Key words, incompressible and compressible flow, factorizable schemes, genuinely multidimensional

upwind schemes, optimal multigrid efficiency

Subject classification. Applied and Numerical Mathematics

1. Introduction. The standard numerical methods used for incompressible flow computations do not

have much in common with the standard methods for compressible flow. The explanation of this fact is

because difficulties encountered initially in each case were of a very different nature. We shall begin with

briefly describing these difficulties and the evolution of the numerical methods for the two classes of problems.

1.1. Dimension-by-dimension methods (compressible flow). The main difficulty encountered

when constructing numerical methods for compressible flow equations was the possible presence of disconti-

nuities in the solutions. It took a prolonged effort of numerous researchers to devise what we call now the

shock-capturing methodology. One of the basic ingredients of the shock-capturing schemes is the so-called

(approximate) Riemaim solvers (or their alternative flux-splitting techniques) which are used to construct

a first order accurate scheme. Another important ingredient is the so-caUed high-resolution mechanism, that

allows one to combine higher order accuracy with shock-capturing capabilities, i.e., to circumvent Godunov's

theorem. It appears in the form of interpolation (or extrapolation) based on a certain smoothness monitor,

that is usually implemented in the form of a flux-limiter. Many of the relevant issues could be studied on

one-dimensional (unsteady) model problems.

The methods developed for one-dimensional problems were extended later to multidimensions in the

most straightforward way on a dimension-by-dimension basis.

One practical need was to compute steady flow, both external and internal, in multidimensions. Steady

problems are generally solved through (pseudo-) time evolution. In other words, the problems are treated in

a hyperbolic (with respect to time) sense. Multigrid methods became widely used as a mean to accelerate

convergence to the steacty-state. The key ingredient of a multigrid algorithm is the smoother, i.e., a relaxation

procedure that efficiently reduces the high-frequency error content. The difficulty, however, is that the

high-frequency error content may be nearly invisible in the residuals (poor measure of h-ellipticity) of high-

resolution schemes constructed on a dimension-by-dimension basis. This makes it inherently impossible to
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constructanefficientsmoother.
Anothermajordifficultyis that,in general,nodistinctioncanbemadebetweenthedifferentco-factors

at thediscretelevel,i.e.,thestandardhigh-resolutionschemesarenot factorizable. This deficiency of the

standard discretizations also contributes to the poor performance of standard multigrid solvers. It also leads

to the loss of accuracy and deteriorating computational efficiency in the case of low speed compressible flow.

Discrete schemes that are only partially based on the dimension-by-dimension approach were presented

in [6], [7], [9] and [13]. In these schemes, some of the second order corrections appear in the form of terms

approximating mixed dcrivatives. The remaining corrections are based on dimension-by-dimension high-

resolution mechanism. Schemes of this type when tuned for steady-state computations would have a better

h-ellipticity property than the standard ones. This direction, however, has not been explored.

1.2. Projection-type methods (incompressible flow). Incompressible flow in one dimension is

trivial. Therefore, numerical analysts had to address the multidimensional problems right away. Incom-

pressible flow problems (both steady and unsteady) contain an elliptic part, which rules out the use of an

explicit scheme.

One of the earlier approaches was to substitute the continuity equations by the pressure Poisson equa-

tion, derived using the momentum and the continuity equations (see a summary in [10]). By using such a

representation, decoupling of the elliptic factor (in the form of the pressure Poisson equation) from the rest

of the system can be achieved. This formulation has been used in conjunction with multigrid as well. In [20],

it was demonstrated that by deriving and treating the boundary conditions for the pressure properly one

can obtain the ideal multigrid efficiency both for inviscid and viscous cases. Some different versions of the

algorithm are discussed in [15] and in [14], where some steps in deriving the pressure Poisson equation are

made at the discrete level. Two variants of the algorithm are being pursued: one for structured body-fitted

grids, another for unstructured grids (see [14]). Ideal multigrid efficiency was demonstrated for both on

several test cases. A possible extension of this approach to the compressible subsonic case is discussed in

[15].

Several methods exist based on discretizing the equations of incompressible flow in their usual (primitive)

form. It is interesting to note that one of the earlier methods (MAC) (see [8]) relies on a staggered grid

discrctization and uses a pressure Poisson equation derived at the discrete level to update the pressure.

A known property of a vector field is that it can be represented as a sum of its irrotational and solenoidal

components. The attractive feature of the staggered grid discretization is that this property can be imitated

on the discrete level (second-order accurate approximation to the Cauchy-Riemann equations) without pro-

ducing an odd-even instability. It is problematic, though, to achieve the same on non-staggered grids.

When solving the equations of incompressible flow in their primitive form, the important part of the

process is to satisfy the continuity equation, i.e., to project the velocity field onto the divergence-free manifold

or, in other words, to discard the irrotational component of the velocity field. Such a process is the main part

of the projection method [5], whose original version was based on non-staggered grids. It was reformulated

later using staggered grids. A convenient way to perform the projection step is to introduce an auxiliary

variable potential and to solve the resulting Poisson equation. This was first done in [1].

A commonly used algorithm for solving the incompressible flow equations is the SIMPLE algorithm by

Patankar & Spalding [12]. It is interesting to note that this algorithm was extended to the compressible

(subsonic) case (see [111,[2]).

Applying multigrid methods for solving the fluid flow problems is one of the main subjects of the

landmark work [3]. Although a few various possibilities are mentioned, the approach, systematically studied



andadvocated,isbasedonthestaggered-griddiscretizationandanauxiliarypotentialvariable.It wasshown
that thepropertreatment(DistributiveGauss-Seidclrelaxation- shortlyDGS)resultsin thedccouplingof
differentco-factorsof the system.It wasdemonstratedlaterin [4]that anoptimalMG efficiencycanbe
obtainedfortheincompressibleEulerequations.Somewaysof generalizingtheseideasto thecompressible
flowweresketchedout in [3]aswell.

TheVorticity-Potential(or vorticityandstreamfunctionin two dimensions)formulationof the flow
equationsseemsveryattractive,sincethedifferentco-factorsof theequationsdecouple.Thewellknown
difficultyassociatedwiththisformulation,though,isthederivationandtreatmentoftheboundaryconditions
forvorticity.Anotherdifficultyassociatedwith thisapproachis thatthecomponentsofthevorticityvector
in threedimensionsneedto satisfyacertaincompatibility condition. Also, it is highly problematic to obtain

a numerical scheme with shock-capturing capabilities using the Vorticity-Potential formulation.

The ideal multigrid efficiency for the compressible Euler equations in the subsonic case was demonstrated

first in [23] using the canonical variables formulation of the equations [22]. However, this formulation cannot

be generalized to viscous and unsteady cases.

1.3. About this paper. In order to achieve optimal multigrid efficiency, we have to use projection°

type methods to solve the discrete equations, i.e., methods that distinguish between the different co-factors

of the equations.

The attempts ([2],[23]) to apply projection-type methods to solve the compressible flow equations were

limited to the subsonic case, since the discretizations uscd have no shock-capturing capabilities. On the other

hand the projection-type methods cannot be applied in conjunction with the standard upwind dimension-

by-dimension discretizations, since the latter are not factorizable (see [15]), i.e., no distinction between the

different factors can be made at the discrete level.

There is a need for a factorizable discretization scheme with good shock-capturing capabilities. The

scheme should rely on a high resolution mechanism and it should be sensitive to the high-frequency er-

ror content (h-elliptic) at the same time. The flow equations should also be approximated in their usual

conservative form, since using special formulations leads to the loss of generality. The separation between

the treatment of co-factors should be achieved through thc relaxation procedure, which may rely on some

special auxiliary variables and/or special forms of the equations. It may look as if too many (seemingly

contradictory) requirements need to be satisfied by a single discretization. The purpose of this paper is to

describe a construction of such a discrete scheme.

A search for a genuinely multidimensional upwind scheme was motivated initially by the necessity to

devise a discretization that has the high-resolution and h-ellipticity property at the same time. Such a scheme

for scalar advection problems was proposed in [16],[21]. This approach was extended to the Euler equations

in [18, 17, 19] in the context of unstructured triangular grids. It was demonstrated that a simple pointwise

Gauss-Seidel relaxation is stable when applied directly to the high-resolution discrete equation (contrary to

the case of the standard schemes) and has good smoothing properties. The latter is a manifestation of the

hoellipticity property of the discretization.

It was pointed out in [15] that the genuinely multidimensional approach towards discrctizing the com-

pressible flow equations leads to schemes that are, in addition to other desirable properties, factorizable.

In this paper we describe such a scheme, i.e. a scheme which is Upwind, High-resolution and Factorizable

(UHF). Also, we develop a relaxation procedure that utilizes the factorizability property of the scheme.

2. Preliminaries. In this section we briefly review the genuinely two-dimensional advection scheme,

introduce some basic properties of the Eulcr equations and discuss some standard discretization schemes for
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FIG. 1. Computational grid segment and a control volume.

the fluid flow equations.

2.1. Scalar advection schemes. Consider a steady-state conservation law in two dimensions

-EAu + f(u)_ + g(_)_ = 0 (2.1)

where e > 0 is an infinitesimally small number. A general conservative discrctization of (2.1) is given by

h[(/+ - f-) + (g+ - g-)] = 0 (2.2)

where f+, g+ are the numerical fluxes. A particular discretization scheme for (2.1) can be given by defining

these numerical fluxes.

A numerical scheme can be written in the form

uo = Z Ciu,. (2.3)
i

DEFINITION 2.1. The scheme is said to be of the positive type if C_ > O.

We shall illustrate the construction of some discretization scheme on the linear constant coefficient

version of (2.1)

-_Au + auz + bu_ = 0. (2.4)

A first order upwind scheme can be given by the following numerical fluxes

f__ = ½a(uo + u3) - ½1al(uo - us) (2.5)
g__= ½b(uo+ us) - ½1bl(uo- ,.,s).

Assume for simplicity that

b>a>0.

A second order scheme with a genuinely multidimensional flavor is given by

f_ = f_u __ lb(u3 _ u4)

g_=g___ 1_a(u5 -- U4).

This scheme, however, is not of the positive type.

(2.6)



In orderto combinethepositivitypropertywith thesecondorderaccuracyweneedto incorporatethe
secondordercorrectioninanonlinearfashion.A "straightforward"wayofdoingthisisto modifythefluxes
in thefollowingway

f=fu _ 1
_b(u3 - u4)_b(Q_ ) (2.7)

g_ = g_ - }a(u_ - u4)¢(s_),

which gives a positive second order schemc if the limiter function _ satisfies the inequality

0 < ¢(q) < 1; 0 < ¢(q----_)< 1, (2.8)
_ _ -- Q --

y3(1) = 1

and the arguments of the limiter function are defined by

Q_ - a(uo -- U3)

b(us - u4)

(2.9)

S_ - b(uo- us)
a(u5 - u,)

Using the following identities

b(ua - u4)_b(Q_ ) = -a(uo - ua)¢(Q-)/Q-

a(u5 - u4)O(S- ) - -b(uo - u5)_b(S_)/R_,
(2.10)

it is easy to see that this scheme is no better than the standard high-resolution schemes, since under certain

circumstances it becomes identical to a central scheme (no h-ellipticity property). The fact that it is positive

for a non-compressive limiter only (i.e., no artificial compression can be added) is a disadvantage as well.

Note, that a part of the second order correction can be added with no limiter while still resulting in a

positive (first order) scheme- the so-called N-scheme (see [16, 21])

fN_ = fu_ __ ½a(u3 - u4)

= _a(u_ - u4)
(2.11)

A second order high-resolution scheme can be obtained by adding the remaining part of the correction in a

nonlinear fashion

f_ = fN_ -- ½(b- a)(u3 - u4)_b(R_)
g_ = gN

(2.12)

where

R_ --
a(u_ - u4)
b(u3 -- U4)

It is easy to see ([21]) that (2.12) defines a positive scheme if

0<O(R) <2; 0<--¢(R) <2. (2.13)
-- -- -- R --



2.2. Euler equations. The quasilinear form of the steady Euler equations in two dimensions can be

written in the following way

Lu = 0 (2.14)

where u -- (s, u, v, p)T is the vector of unknown functions (namely, entropy, horizontal velocity component,

vertical velocity component and pressure, respectively),

q 0 0 0 /

L= 0 pq 0 Ox
0 0 pq 0_: '

0 pc2Ox, pc20y q

(2.15)

p stands for density, c for the speed of sound and q denotes the advection operator (with velocity (u, v)). We

shall consider the case of subsonic flow (u 2 + v 2 < c 2) throughout the paper. It is sufficient for the purpose

of the analysis in this paper to consider the linear constant coefficient case.

Determining the type of a system of partial differential equations can be done formally by computing

the determinant of matrix L and examining its principal part

det L = (pq)2. (q2 _ c2A). (2.16)

The first multiplier in (2.16) is the advection operator (times the density) in the power equal to the dimension

of the problem. The second multiplier is the full-potential operator, which, in subsonic case, is of elliptic

type. Thus, the steady Euler system of equations is of the mixed hyperbolic-elliptic type.

2.2.1. One-dimensional case. Consider a first order upwind scheme for the one-dimensional Euler

equations. Without loss of generality we consider the primitive variable formulation

Lu -- 0 (2.17)

where u = (s, u, p)T and

( uOx 0 0 )
L = 0 pu0x 0x • (2.18)

0 pc20_: uO_:

A first order upwind scheme approximating (2.17) is given by

Lhu h = 0 (2.19)

where the discrete variables

uh = (sh, uh,ph) v (2.2O)

and

h h Q2h )

-_lul0** + 0 0
L h 0 h h Q2h) 2h h *,Oh (2.21)= p(--_co_ + o_ - _c _ ,

0 pc2(O_h h ucgh "_ h Q2h-- _-_v_x_ ---_CC9_ +

where h is a mesh size, Oxh_is a central approximation of the second derivative, O_h is a central approximation

of the first derivative and Q2h __ uO_h is the advection operator.



Factorization. The determinant of Lh:

h lula2_ + Q2h)[( d _ u2)a2x ] (2.22)
det(L h) -= p(-

The first factor is the upwind scheme approximating the advection operator corresponding to the entropy

equation. The Full-Potential factor is approximated by a "short" central difference. The issue of factorization

appears to be trivial in this case, since the momentum and the pressure equations correspond solely to the

elliptic factor.

2.2.2. Two-dimensional case. Since the equation for entropy decouples in the form of the advection

equation, whose numerical treatment is straightforward, we can consider without loss of generality the case of

isentropic flow. We can also assumc for simplicity that p = 1. Two-dimensional steady isentropic linearized

Euler equations are now given by the following

Lu = 0, (2.23)

where u = (u, v,p) T and

q 0 0,)
L = 0 q 0_ • (2.24)

C2 0x C20y q

The FDA (First Differential Approximation or Modified equations) corresponding to the first order upwind

scheme, constructed on the dimension-by-dimension basis, is given by

(q _(c - lul)O_) 0 O_ _ h _,

L FDA= 0 (q--h(c--lv])0_) Oy-- _h'_o_y

h_O c2(Oy hv - _cA

(2.25)

where q is an FDA of the first order upwind advection scheme. It is easy to verify that LF1DA does not

preserve the factorizability property of L, i.e., in the det(L FDA) we cannot distinguish between the FDAs

corresponding to advection and full-potential factors. The same applies, of course, to the corresponding

discrete scheme.

The dimension-by-dimension scheme (whose FDA is given by (2.25)) can be upgraded to higher order

accuracy by introducing the standard nonlinear high-resolution correction. However, by doing so, we obtain a

scheme that is not only not factorizable but also can be insensitive to some high-frequency error components

(has a poor measure of h-ellipticity). All this makes it practically impossible to construct an efficient solver

for the resulting discrete equations.

3. Factorizable scheme. In order to combine the high-resolution and h-ellipticity properties the ex-

tension of the ideas leading to the genuinely multidimensional advection scheme need to be generalized to

systems of equations. Such a generalization on triangular grids was proposed in [18, 17, 19]. As well as

in the scalar case, the' seeond-order corrections are given by the terms approximating mixed derivatives.

These corrections may rely on two-dimensional limiters. It was demonstrated that the Gauss-Seidel relax-

ation is stable when applied directly to the high-resolution discrete equations (unlike in the case of standard

dimcnsion-by-dimension schemcs). This indicated that these new schemes have stability propcrties superior

to the standard ones.

It was pointed out in [17] that some of thesc corrections can be added without limiters, in a linear

fashion. Indeed, similar to the scalar case (see [21] and also §2.1), in order to obtain a scheme with better



linearstabilityproperties,it isdesirableto includeasmuchofthesecondordercorrectionaspossiblewithout
limiters.Thisis especiallyimportantin thecontextof structuredgrids("9-pointbox"stencil);otherwise
onecanobtaina schemethat isnobetterthanthestandardones(see§2.1).

However,unlikethescalarcase,it is unclearwhatisa suitablecriterionfor determiningwhichparts
ofthe correctionsdonot haveto relyon thelimiters.Thedifficultyhereis that thenotionsof maximum
principleandpositivitydonotextendto systemsofequationsin asuitableway.

Werecallheretheobservationthat wasmadein [15].ConsidertheFDAcorrespondingto thesecond
ordergenuinelymultidimensionalupwindschemewithall thesecondordercorrectionsaddedin a linear
fashion

( q_ h(c_ lu])O, x h 0 -- him
L FDA h(c lUI)OzV q_ 2h_(c IVl)Oy_ h l )= -3 -- - 0_- _-;Qy • (3.1)

_o_ - h -hcQ Q- _u',_cQ_ c2O_- 2

It can bc verified that (3.1) is factorizable.

The implication of this is that the multidimensional corrections not only lead to a second-order scheme,

but some of them are also responsible for the factorizability. Since it is a desirable property, the latter

corrections should be included without limiters.

There exist many discretizations that correspond to (3.1). Note that not all of them are factorizable.

We would now like to construct an actual discrete scheme which is factorizable as well.

The technical difficulty here is that the following differential equalities

OxxOy = O_yOz (3.2)

need to have discrete analogs. Approximating the derivatives 0_, 0_, 0_, 0yy by standard central finite

differences and discretizing the mixed derivatives in some reasonable way, we can see that the discrete

analog of (3.2) does not hold.

Let us introduce some non-standard finite differences

(101)v(121)Ii II
8_=_ -2 0 2 ; 8_=_ 0 0 0

-I 0 1 -I -2 -I

(3.3)

(1_21)/121)11 11o_x-_ 2 -4 2 ; '9_-_h_ -2 -4 -2
1 -2 1 1 2 1

(3.4)

Let us denote also

11(_101)8_=_ o o o m

1 0 -1

11(121)h---- _ 2 -12 2
1 2 1

(3.5)

(3.6)



and

O h = u_x_ + vcOxu (3.7)

(_h x = U_xy -_- V_yy.

It is easy to see that the discrete analog of (3.2) holds if the derivatives are approximated by the finite

differences as defined by (3.3), (3.4) and (3.5).

Consider now the following discrete scheme that corresponds to the FDA given by (3.1)

qh h -h

- _(c-lul)0_x
L h h -h= -_(c- lul)O_u

_2G_h h Cf_
c :c--7 _x

qh _ h(c_ iv[)Ohu

- _h__hl(_h I

_h _ h l oh_-_ y •

Qh _ _c2_h

(3.s)

u = Iv_+ v_l,

U
M=--

c

¢

2f/= _ M, ifM>Ch (3.9)

( Ch otherwise

where C > 0 is a constant.

We can "rescale" the artificial dissipation terms, obtaining the following discrete scheme, which wc shall

call UHF (Upwind, High-resolution, Factorizable)

oh -- h(u _ I_l)_h
L : h -h-_(u- rul)o_

2 h h 1c (0_ - _Q_)

h -h h M c3h-_(u-Ivl)Oh_ 02 - _-7-_

)-_(U -h h,c_h
C2(0h_ h_ I_L._Q _ Qh h c Ah2 cM YJ -- 2-_--

(3.1o)

where

_th = qh _ _h2¢CA h, (3.11)

and the "augmented" Mach number

the Mach number

It is factorizable and its determinant is given by

det(L h) = qh[(Qh _ hc,_h)(qh h lul)_h x _

h

_(oh_ _ cQ_)( ch1 -h,, 2,._h hc,_- - O _2c._,
hl-h 2 h h

-(0_ - -_ cQy)(c O_ - _cQy)]

Note that the discrete approximation of the elliptic factor becomes the so-called "skewed" discrete Laplacian

(not an h-elliptic operator) when the flow speed (Mach number) goes to zero. This difficulty can be dealt

with in various ways. The simplest option is to slightly modify the scheme so that the problem mentioned

above disappears.

Denote the total velocity



is the discrete advection operator augmented by a second-order small dissipative term and A h is the usual

"5-point-star" discrete Laplacian. This "regularization," obviously, prevents the advcction scheme from

degenerating at a stagnation point. It plays an additional important role, though, which will be explained

later in this section.

Before discussing some properties of the UHF scheme and computing its determinant, we shall introduce

the simplified notation

_-_Qx (3.12)
= v_Q_

and

-h h MQh

-h - hM -h
(3.13)

_lh = Qh _ -_h c :_h (3.14)
2M

0h = 0 h - _((u - lut)a_ + (u - tvl)02_).

Then the UHF scheme (3.10) can be written as

(3.15)

(q h - _(u -r_1)32, --_(u-Ivl)_2_ o_-h ) (3,16)
L= -h(U2 - lul)_y Oh -- _(V -- lVl)Oh_ O v

2 h 2 h _thc O_ c O_

and its determinant

det(L h) 0 h 2 h-h h-h _lh= •[c (a_a_ + o_,a_) - •oh]. (3.17)

Let us take a closer look at what happens at a stagnation point (U = u = v = 0)

Oh = -lh2cCAh (3.18)

Oh = - _h2cCA h (3.19)

oh - c Ah" (3.20)
2C

It becomes plain that

_th . oh 1 h2c2AhAh
=_ (3.21)

which is an h-elliptic operator. We can conclude now that for the UHF scheme (3.16) (or (3.10)) the

approximation of the Full-Potential factor remains h-elliptic in the case of vanishing velocity. Moreover,

it can be verified that the Full-Potential factor is approximated in this case by a "regular" five-point star

discrete Laplacian A h.

10



4. The relaxation procedure. Having constructed a factorizable discretization scheme for the Euler

equations, an important question becomes how to use this property in order to obtain an efficient algorithm

for solving the discrete equations.

Introduce the auxiliary variables, namely, the discrete stream-function and potential by the following

where

We can also define the discrete vorticity

I)vh _ ._h . @h

¢h
ph

( h)-h

A4 h = -01 O_

0 Oh

= curl". (uh,vh) = -hl) (uh,vh)

(4.1)

(4.2)

(4.3)

or

-h h
w h (O_O_ -h h h (4.4)= + OyOy)_ .

Introduce also the following matrix operator

ph = O_ -0_ 0 . (4.5)
0 0 1

h

It is easy to see that applying the discrete curl operator to the momentum equations (pre-multiplying L h

by 7_h) and performing the substitution of variables according to (4.1) (post-multiplying L h by A4h), wc

obtain

( .(O_O x 0 ) (4.6)+Oy0_) h-h h-h _lh 0 h •
7_h .Lh'A4 h = _lh h-h h-h

0 C2(0_0_ + O_Oy) -- •

In other words we end up with "solving" the system

• (0_0_ + 0_0_) 0
2 h - h h - h Cl h O h • (i)h _-- 0 (4.7)0 c (0_0_ + OyOy) - -

or

(0h 02 h-h h-h eth Oh ' Ch = 0. (4.8)0 C (0_O_+0_0y)-- •

The Distributive relaxation procedure at a point amounts to computing updates to the discrete potential

and vorticity (or streamfunction) according to (4.8) and to translating them into corresponding updates of

the velocity components and the pressure at the point of interest and its neighbors according to matrix (4.2)

and (4.1).
h-h h-h

Note that the operator (OxO x + OyOy) is not h-elliptic. Therefore, the relaxation procedure described

above will not smooth certain high-frequency error components. This lack of h-ellipticity seems unavoidable

for obtaining the desired factorization. However, a simple remedy exits for this trouble. It is to augment

each sweep of the Distributive relaxation by a sweep of a point Collective Gauss-Seidel relaxation. The latter

will smooth the problematic error components.

It might also be useful to perform the point collective relaxation, instead of Distributive, on and near

the boundary, thus avoiding the difficulty of imposing boundary conditions for vorticity.

ll



5. Discussion and conclusions. When discretizing a system of partial differential equations, being

concerned just with obtaining an approximation of a certain order of accuracy may not necessarily lead

to a satisfactory result. It may be very useful to make sure that the discretization also imitates some

fundamental properties of the PDEs. We have outlined a construction of a discretization scheme that not

only approximates the compressible Euler equations, but imitates their factorizability property. This paves

the way towards construction of optimally efficient multigrid solvers and also should alleviate the problem

associated with computation of low-speed flow using the standard shock-capturing schemes.

This paper addressed the subsonic case only. The constructed UHF scheme, though, is related to the

family of the genuinely multidimensional upwind schemes constructed previously (see [18, 17, 19]). Schemes

of this type were demonstrated to have excellent shock capturing capabilities in transonic-supersonic cases

togcther with maintaining the h-eUipticity property. Therefore, we do not anticipate any difficulties in

extcnding the factorizable scheme to the transonic-supersonic regimes. This is a subject of future work.

We also developed a relaxation procedure that uses the factorizability property of the scheme for the

purpose of obtaining ideal multigrid efficiency. This procedure relies on auxiliary potential and vorticity

(or streamfunction) variables. Note that using only an auxiliary potential variable (as in the incompressible

case) is not sufficient yet to decouple the different factors (or obtaining upper- or lower-triangular matrix

of difference operators). This is due to the bulk viscosity-like terms, which are a part of the artificial

dissipation in the constructed scheme and are essential for its faetorizability and second order accuracy.

Another auxiliary variable is needed - vorticity (or streamfunction).

The approach we introduce in this paper seems very general. The future work will be devoted generalizing

it to three dimensions, to Navier-Stokes equations and to unsteady problems.

The proposed approach also essentially unifies the numerical treatment of the steady incompressible and

compressible flow, since, on one hand, it belongs to the class of projection-type methods, on the other hand

its extension to the supersonic case has shock-capturing capabilities.
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